Transfer of View-manifold Learning to Similarity Perception of Novel Objects

نویسندگان

  • Xingyu Lin
  • Hao Wang
  • Zhihao Li
  • Yimeng Zhang
  • Alan L. Yuille
  • Tai Sing Lee
چکیده

We develop a model of perceptual similarity judgment based on re-training a deep convolution neural network (DCNN) that learns to associate different views of each 3D object to capture the notion of object persistence and continuity in our visual experience. The re-training process effectively performs distance metric learning under the object persistency constraints, to modify the view-manifold of object representations. It reduces the effective distance between the representations of different views of the same object without compromising the distance between those of the views of different objects, resulting in the untangling of the view-manifolds between individual objects within the same category and across categories. This untangling enables the model to discriminate and recognize objects within the same category, independent of viewpoints. We found that this ability is not limited to the trained objects, but transfers to novel objects in both trained and untrained categories, as well as to a variety of completely novel artificial synthetic objects. This transfer in learning suggests the modification of distance metrics in viewmanifolds is more general and abstract, likely at the levels of parts, and independent of the specific objects or categories experienced during training. Interestingly, the resulting transformation of feature representation in the deep networks is found to significantly better match human perceptual similarity judgment than AlexNet, suggesting that object persistence potentially could be a important constraint in the development of perceptual similarity judgment in our brains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Larity Perception of Novel Objects

We develop a model of perceptual similarity judgment based on re-training a deep convolution neural network (DCNN) that learns to associate different views of each 3D object to capture the notion of object persistence and continuity in our visual experience. The re-training process effectively performs distance metric learning under the object persistency constraints, to modify the view-manifol...

متن کامل

A Novel Method for Tracking Moving Objects using Block-Based Similarity

Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Experimental and Numerical Flow Investigation of Intake Manifold and Multi Criteria Decision Making on 3-cylinder SI Engine using Technique for Order of Preference by Similarity to Ideal Solution (RESEARCH NOTE)

In this paper, technique for order of preference by similarity to ideal solution(TOPSIS) method is used to find the best compromising design of intake manifold for a 3-cylinder engine considering mean value of torque, torque at 3500 rpm, mean value of brake mean specific consumption (BSFC) and BSFC at 3500 rpmas four objective functions. To calculate the objective functions, engine simulation i...

متن کامل

Similarity-based viewspace interpolation

Visual objects can be represented by their similarities to a small number of reference shapes or prototypes. This method yields low-dimensional (and therefore computationally tractable) representations, which support both the recognition of familiar shapes and the categorization of novel ones. In this note, we show how such representations can be used in a variety of tasks involving novel objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.00033  شماره 

صفحات  -

تاریخ انتشار 2017